2,889 research outputs found

    Complete bond-operator theory of the two-chain spin ladder

    Full text link
    The discovery of the almost ideal, two-chain spin-ladder material (C_5H_12N)_2CuBr_4 has once again focused attention on this most fundamental problem in low-dimensional quantum magnetism. Within the bond-operator framework, three qualitative advances are introduced which extend the theory to all finite temperatures and magnetic fields in the gapped regime. This systematic description permits quantitative and parameter-free experimental comparisons, which are presented for the specific heat, and predictions for thermal renormalization of the triplet magnon excitations.Comment: 12 pages, 10 figure

    Circulating-current states and ring-exchange interactions in cuprates

    Get PDF
    We consider the consequences for circulating-current states of a cyclic, four-spin, ``ring-exchange'' interaction of the type shown recently to be significant in cuprate systems. The real-space Hartree-Fock approach is used to establish the existence of charge-current and spin-current phases in a generalized Hubbard model for the CuO_2 planes in cuprates. We compare the results of the Hartree-Fock approximation with the correlated states renormalized by Gutzwiller projection factors which allows us to gauge the qualitative effects of projection to no double site occupancy. We find that charge flux states may be competitive in cuprates, whereas spin flux states are suppressed in the strongly correlated regime. We then include the ring-exchange interaction and demonstrate its effect on current-carrying states both at and away from half-filling.Comment: 14 pages, 11 figure

    Nonlinear sigma Model Treatment of Quantum Antiferromagnets in a Magnetic Field

    Full text link
    We present a theoretical analysis of the properties of low-dimensional quantum antiferromagnets in applied magnetic fields. In a nonlinear sigma model description, we use a spin stiffness analysis, a 1/N expansion, and a renormalization group approach to describe the broken-symmetry regimes of finite magnetization, and, in cases of most interest, a low-field regime where symmetry is restored by quantum fluctuations. We compute the magnetization, critical fields, spin correlation functions, and decay exponents accessible by nuclear magnetic resonance experiments. The model is relevant to many systems exhibiting Haldane physics, and provides good agreement with data for the two-chain spin ladder compound CuHpCl.Comment: 14 pages, 6 figures, full paper to accompany cond-mat/980415

    Multi-triplet bound states and finite-temperature dynamics in highly frustrated quantum spin ladders

    Full text link
    Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal fluctuation effects in a restricted phase space. While some information about dynamical response functions is available from theoretical studies of the one-triplet dispersion in unfrustrated chains and ladders, little is known about the finite-temperature dynamics of frustrated systems. Experimentally, inelastic neutron scattering studies of the highly frustrated two-dimensional material SrCu2_2(BO3_3)2_2 show an almost complete destruction of the one-triplet excitation band at a temperature only 1/3 of its gap energy, accompanied by strong scattering intensities for apparent multi-triplet excitations. We investigate these questions in the frustrated spin ladder and present numerical results from exact diagonalization for the dynamical structure factor as a function of temperature. We find anomalously rapid transfer of spectral weight out of the one-triplet band and into both broad and sharp spectral features at a wide range of energies, including below the zero-temperature gap of this excitation. These features are multi-triplet bound states, which develop particularly strongly near the quantum phase transition, fall to particularly low energies there, and persist to all the way to infinite temperature. Our results offer valuable insight into the physics of finite-temperature spectral functions in SrCu2_2(BO3_3)2_2 and many other highly frustrated spin systems.Comment: 22 pages, 19 figures; published version: many small modification

    Static impurities in the kagome lattice: dimer freezing and mutual repulsion

    Full text link
    We consider the effects of doping the S = 1/2 kagome lattice with static impurities. We demonstrate that impurities lower the number of low-lying singlet states, induce dimer-dimer correlations of considerable spatial extent, and do not generate free spin degrees of freedom. Most importantly, they experience a highly unconventional mutual repulsion as a direct consequence of the strong spin frustration. These properties are illustrated by exact diagonalization, and reproduced to semi-quantitative accuracy within a dimer resonating-valence-bond description which affords access to longer length scales. We calculate the local magnetization induced by doped impurities, and consider its implications for nuclear magnetic resonance measurements on known kagome systems.Comment: 9 pages, 12 figure
    • …
    corecore